The Qualities of an Ideal RAG
Step-by-Step AI Guide for Non-Tech Business Owners
A straightforward, no-jargon workbook showing how AI can truly benefit your business — and where it may not be useful.
Dev Guys Team — Smart thinking. Simple execution. Fast delivery.
The Need for This Workbook
If you run a business today, you’re expected to “have an AI strategy”. All around, people are piloting, selling, or hyping AI solutions. But most non-tech business leaders face two poor choices:
• Agreeing to all AI suggestions blindly, expecting results.
• Rejecting all ideas out of fear or uncertainty.
It guides you to make rational decisions about AI adoption without hype or hesitation.
Forget models and parameters — focus on how your business works. AI should serve your systems, not the other way around.
Using This Workbook Effectively
Work through this individually or with your leadership team. The purpose is reflection, not speed. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A clear order of initiatives instead of scattered trials.
Treat it as a lens, not a checklist. If your CFO can understand it in a minute, you’re doing it right.
AI strategy is just business strategy — minus the buzzwords.
Step One — Focus on Business Goals
Focus on Goals Before Tools
Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Start with measurable goals that truly impact your business.
Ask:
• What 3–5 business results truly matter this year?
• Which parts of the business feel overwhelmed or inefficient?
• Which processes are slowed by scattered information?
AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.
Start here, and you’ll invest in leverage — not novelty.
Understand How Work Actually Happens
Understand the Flow Before Applying AI
AI fits only once you understand the real workflow. Simply document every step from beginning to end.
Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice generated ? sent ? reminded ? paid.
Every process involves what comes in, what’s done, and what moves forward. AI belongs where the data is chaotic, the task is repetitive, and the result is measurable.
Step 3 — Prioritise
Assess Opportunities with a Clear Framework
Choose high-value, low-effort cases first.
Think of a 2x2: impact on the vertical, effort on the horizontal.
• Quick Wins — high impact, low effort.
• Reserve resources for strategic investments.
• Minor experiments — do only if supporting larger goals.
• Avoid for Now — low impact, high AI systems effort.
Always judge the safety of automation before scaling.
Begin with low-risk, high-impact projects that build confidence.
Balancing Systems and People
Fix the Foundations Before You Blame the Model
Messy data ruins good AI; fix the base first. Ask yourself: Is the data 70–80% complete? Are processes well defined?.
Keep Humans in Control
Keep people in the decision loop. As trust grows, expand autonomy gradually.
Avoid Common AI Pitfalls
Learn from Others’ Missteps
01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Automation Mirage — expecting overnight change.
Define ownership, success, and rollout paths early.
Working with Experts
Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Transparency about failures reveals true expertise.
Signs of a Strong AI Roadmap
How to Know Your AI Strategy Works
It’s simple, measurable, and owned.
Your team discusses workflows and outcomes, not hype.
Pilots have owners, success criteria, and CFO buy-in.
The Non-Tech Leader’s AI Roadmap Checklist
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Is the data complete enough for repetition?
• Where will humans remain in control?
• How will success be measured in 90 days?
• What’s the fallback insight?
The Calm Side of AI
AI done right feels stable, not overwhelming. Focus on leverage, not hype. True AI integration supports your business invisibly.